

Cleaning in the 21st Century The Dark Ages?

Dr. Ina (L.E. Willemsen) Consultant Infection Control Amphia hospital The Netherlands March 15th 2017

Amphia hospital

- Large teaching hospital
- ± 45.000 admissions per day
- 3 hospital locations
- 235 people housekeeping employees, working across3 locations
- Department of infection control with 10 infection control practitioners

The importance of cleaning in a hospital

- Increase in life expectancy
- Increase in chronic diseases
- Increase in the complexity of care
- Increase in antimicrobial resistance

The importance of cleaning in a hospital

Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings

Jonathan A. Otter PhD^{a,b,*}, Saber Yezli PhD^b, James A.G. Salkeld BSc^b, Gary L. French MD, FRCPath^a

* Centre for Clinical Infection and Diagnostics Research (CIDR), Department of Infectious Diseases, King's College London & Guy's and St. Thomas' NHS Foundation Trust, London, UK ^b Bioquell, Andover, Hampshire, UK

Increased risk from the prior room occupant «the room lotto»

Patient with a pathogen (e.g. *C. difficile*, MRSA, VRE, *A.baumanii of P. auruginosa*) Patient is discharged Room is cleaned & disinfected The next room occupant is at an increased risk of acquiring the pathogen

Increased risk from the prior room occupant

Figure: increased risk associated with the prior room occupant

* VRE in the two weeks prior to admission

immediate prior room occupant was VRE positive

Routes of transmission – Hands & Instruments

Patient environment

Hands & Instruments

Next patient

The importance of cleaning in a hospital

Direct patient contact	Contact with environmental surfaces only
45% of 50 HCP acquired MRSA on their gloved hands	52% of 44 HCP acquired VRE on their hands or glove
50% of 30 HCP acquired <i>Clostridium difficile</i> on their gloved hand	40% of 50 HCP acquired MRSA on their gloved hands
	50% of 30 HCP acquired <i>C difficile</i> on their gloved hands
Compliance with hand hygiene: 80%	Compliance with hand hygiene: 50%

Otter et al. Evidence that contaminated surfaces contribute to the transmission of AJIC May 2013

Routes of transmission – Hands & Instruments

In the absence of clear cleaning policy for dect telephones and stethoscopes a study was performed to culture these items.

- Physicians and residents were asked to participate
- Items were sampled according to a standardized method
- Agar plate were cultured overnight at 35-37 gr C.

Day 0	
Dect phone	8% carried S. aureus
Stetoscope	12% carried S. aureus
Day 35	
Dect phone	5% carried S. aureus
Stethoscope	12% carried S. aureus

Routes of transmission – droplet / airborn

Examples of High-touch items and surfaces in the patient environment

Best Practices for Environmental Cleaning for Prevention and Control of Infections – PIDAC 2012

Surface survival

Organism	Survival time
Clostridium difficile (spore)	> 5 months
Acinetobacter spp	3 days to 11 months
Enterococcus spp (incl. VRE)	5 days to > 46 months
Pseudomonas aeruginosa	6 hours to 16 months
Klebsiella spp	2 hours to > 12 months
Staphylococcus aureus (incl. MRSA)	7 days to > 12 months
Norovirus	8 hours to > 2 weeks

NOTE. Adapted from Kramer et al. BMC Infect Dis 2006;6:130

How long can extended-spectrum β -lactamase (ESBL)-producing *E. coli* survive on dry inanimate surface in water, saline and sheep blood

- E. coli ST131 and E. coli ST10
- Bacterial survival on the glasses was determined hourly during the first day, daily during following 6 days, and once weekly from day 7 up to 100 days.

V. Weterings et al. Submitted for publication

A biphasic survival curve for all materials was observed, whereby there was a rapid decrease in the number of viable bacteria in the first six hours, followed by a much slower decrease in the subsequent days.

Observed (circle ST10; triangle ST131) and predicted survival of ST10 (solid line) or ST131 (dotted line) in water, saline and sheep blood in the first 6h (I) and total study period (II).

A biphasic survival curve for all materials was observed, whereby there was a rapid decrease in the number of viable bacteria in the first six hours, followed by a much slower decrease in the subsequent days.

Observed (circle ST10; triangle ST131) and predicted survival of ST10 (solid line) or ST131 (dotted line) in water, saline and sheep blood in the first 6h (I) and total study period (II).

A biphasic survival curve for all materials was observed, whereby there was a rapid decrease in the number of viable bacteria in the first six hours, followed by a much slower decrease in the subsequent days.

Observed (circle ST10; triangle ST131) and predicted survival of ST10 (solid line) or ST131 (dotted line) in water, saline and sheep blood in the first 6h (I) and total study period (II).

This study shows that ESBL-producing *E. coli* ST10 and ST131 can survive on dry inanimate surfaces for long periods of time, even up to **71** days.

In the first 6h of the experiment:

- **Increased survival of ST131** as compared to ST10.
- The proportion surviving per hour was substantially higher in **sheep blood** than in the other media.

After the first 6h of the experiment

• No difference between suspension fluids and ST-type.

«OK, you made your point....» cleaning is important!

Cleaning techniques

Boyce Antimicrobial Resistance and Infection Control (2016) 5:10 DOI 10.1186/s13756-016-0111-x

Antimicrobial Resistance and Infection Control

REVIEW

Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals

John M. Boyce

- Personnel-related issues
- Issues related to disinfection protocols and practices
- Monitoring housekeeping practices
- New liquid disinfectants
- Self-disinfecting surfaces
- No-touch room decontamination methods (e.g. hydrogen peroxide; ultraviolet)

Cleaning techniques

Boyce Antimicrobial Resistance and Infection Control (2016) 5:10 DOI 10.1186/s13756-016-0111-x

Antimicrobial Resistance and Infection Control

REVIEW

Open Access

Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals

John M. Boyce

- Personnel-related issues
- Issues related to disinfection protocols and practices
- Monitoring housekeeping practices
- New liquid disinfectants
- Self-disinfecting surfaces (e.g. coatings)
- No-touch room decontamination methods Xenex

We tested the influence of two TiO₂-based coating on the survival of Escherichia coli ST131 in the environment?

Coating A	reduction	Max effect
E.coli in sterile saline	1.55 log reduction	7 hour
<i>E.coli</i> in sheep blood	no reduction	-
Coating B	reduction	Max effect
Coating B <i>E.coli</i> in sterile saline	reduction3.15 log reduction	Max effect 5 hour

This study shows that TiO_2 -based coatings reduce bacterial survival in sterile saline in an in vitro setting.

Questions remain with respect to the efficacy of TiO2 based coatings in clinical settings, as

- the antibacterial effect was absent in the presence of blood;
- the presence of UV-light is a prerequisite for the antibacterial effect;
- data on the long-term persistence of the antibacterial effect of TiO2 coatings are lacking

* Environ-X and Produsafe QX supplied the coated cover glasses, but didn't participate in the study design, the interpretation of results, or the decision to publish the data.

Pulsed Xenon Ultravilote light

The Xenex Pulsed Xenon lamps produce a flash of full spectrum germicidal light that irreversibly damages micro-organisms.

- 1. Photohydration (pulling water molecules into the DNA that prevents transcription)
- 2. Photosplitting (breaking the backbone of the DNA)
- 3. Photodimerization (improper fusing of DNA bases)
- 4. Photo crosslinking (cell wall damage and cell lysis)

Easy in use

No need to seal room vents or doors No penetration through glass or plastic

Pulsed Xenon Ultravilote light

What is the influence of PX-UV, after variable time-intervals, on the survival time of *K. pneumoniae* Sequence Type (ST) 258, a pandemic strain.

Pulsed Xenon Ultravilote light

This study shows that PX-UV effectively reduces bacterial counts in the environment.

However, the effect was much stronger after 3.5 hours.

This is probably due to the evaporation of water, exposing the bacteria to the direct effect of UV-light.

The PX-UV is a promising technique to control environmental contamination with highly-resistant microorganisms. This should be studied in a clinical setting.

* REV Desinfectie Robots supplied the Xenex Germ-Zapping Robot, but didn't participate in the study design, the interpretation of results, or the decision to publish the data.

Laboratory versus clinical setting

Measuring environmental contamination

Method	Advantages	Disadvantages	
Visual inspection	Simple	Does not provide reliable assessment of cleanliness	
Fluorescent marker system	Inexpensive Minimal equipment needed	Must mark surfaces before cleaning, and check them after cleaning	
Aerobic colony counts	Relatively simple Detects presence of pathogens	More expensive Results not available after 48 hrs	
ATP bioluminescence assay systems	Provides quantitative measure of cleanliness Quick results	More expensive Requires special equipment	

Measuring environmental contamination

ATP (Adenosine Tri-Phosphate) = Organic matter (debris, food, bacteria) The presence of ATP is indicative for insufficient cleaning

The more light (= RLU), the more contamination

Advantage:

- Standardized
- Objective
- Quantitative
- Real time feedback
- Useful for education purposes and feedback

Griffith CL et al. J Hosp Infect 2000;45:19; Boyce JM et al. Infect Control Hosp Epidemiol 2009;30:678; Boyce JM et al. Infect Control Hosp Epidemiol 2010;31:99

CLEAN	INTERMEDIATE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	> 3000 RLU

* Sherlock et al. Is it really clean? J. Hosp. Infect. 2009;72:140-146

* Boyce JM et al. Infect. Control. Hosp. Epidemiol. 2009;30:678084

CLEAN	GREY ZONE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	>3000 RLU

Computer keyboard in our laboratory

CLEAN	GREY ZONE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	> 3000 RLU

Computer keyboard in our laboratory **after cleaning**

CLEAN	GREY ZONE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	> 3000 RLU

Table in the canteen, with food rest!

9,194 RLU

CLEAN	GREY ZONE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	> 3000 RLU

Table in the canteen, with food rest, **after cleaning**

329 RLU

CLEAN	GREY ZONE	CONTAMINATED
< 1500 RLU	1500 – 3000 RLU	> 3000 RLU

Body fluid !! one small droplet

Measuring environmental contamination

Which items should be tested?

1. Frequently touched by patients

2. Frequently touched by healthcare workers

3. Medical devices

- Glucose meter
- Thermometer
- 4. Sanitary items
 - Toilet seat
 - Potty chair

RESULTS Amphia hospital (example ward A)

locatie	ward A (I)	ward A (II)	ward A (III)
bed rail	0 1858	0 1841	0 2158
bed rail	9 5683	0 1759	0 776
overbed table (surface top)	0 2816	638	435
washstand	97 397	0 134	0 109
shower chair	01068	9 3097	0 179
support bar in the toilet room	🥥 1870	569	828
toilet seat (upper-side)	12131	3579	6339
door handle nursing office	3195	1138	962
patient alarm bell	3443	11411	0 1535
i.v. pole (most frequently touched part)	93954	01069	0 1271
keyboard PC in the nursing office	6370	9 3611	<u> </u>
ward telephone (inside nursing office)	<u> </u>	9 4766	822
control panel bedpan washer	9400	9 198	99
bedside commode (bedpan-chair)	968	757	9 4193
cabinet for medical supply & bandages (hand grip	olimia 1652 🔘	0 1876	357
blood pressure cuff	🥥 1148	0 1187	578
ear thermometer	0 1701	1390	553
blood glucose meter	0 1541	881	844
work surface of the bench for drug preparation	833	55	0 193
keyboard Computeer On Wheels (COW)	8209	983	0 1814

RESULTS nursing home (example NH A)

RESULTS nursing home (example NH A and B)

bed rail	3.373	1566	926	233
overbed table	9.689	3044	1.119	80
toilet seat	938	3981	1.407	233
bedside commode	3.196	3535	1239	1299
washstand	36.560	261	1329	1040
support bar toilet	38.846	8164	1198	2096
table livingroom	3.446	282	1608	233
doorknob livingroom	6.552	7091	7113	1237
keyboard computer	706	3492	1.030	521
telephone	1.703	4804	2975	1476
medicine supply	1.181	2061	439	287
cabinet for medical supplies & ban	215	3607	5451	55
ear thermometre	895	3142	296	672
glood glucose meter	2.393	3391	190	302
patient lift handle	221.269	22.132	1149	9590

RISK IN HEALTHCARE

Bundle approach

"a collection of things, tied or wrapped up together"

Measurement of both patient and ward-related variables.

Standardised Objective Bundle approach

Outcome or process values are compared to **reference data** (breakpoints) and classified in risk categories: **high**, **intermediate**, **low** risk (traffic light colors)

Results are visualised in a <u>risk profile</u> and an <u>improvement plot</u>

RISK PROFILE Patient-related risks

IMPROVEMENT PLOT

Variables that can be influenced by HCWs

RISK PROFILE

1= transmission of ESBL (%); 5= handhygiëne non-compliance (%); ESBL-rectal carriage (%) Medical devices (%) 2= Inappropriate use of med.devices (%); 6= personal hygiene HCW 3= inappropriate use of antibiotics (%); 7= preconditions infection control 4= environmental contamination (RLU); 100 100 4% 25% McCabe score (comorbidity) Antimicrobial use (%) 100 80 6 60 100 40 77 High risk 20 Intermediate risk 23 Low risk 56% 0 5 IRIS uiteindelijk snel niet onbekend fataal fataal fataal

IMPROVEMENT PLOT

1= transmission of ESBL (%);
2= Inappropriate use of med.devices (%);
3= inappropriate use of antibiotics (%);
4= environmental contamination (RLU);
5= handhygiëne non-compliance (%);
6= personal hygiene HCW
7= preconditions infection control

To provide **relevant** and **easy to understand** information, showing an overall view of the current infection control practice.

Based on the results a targeted quality improvement program is implemented.

IRIS – Amphia hospital

Figure: improvement plots from 5 hospital wards of different medical specialties. IRIS was performed tree times with an interval of 6-8 months

* Willemsen & Kluytmans. De Infectierisicoscan in de praktijk, Verbetering van infectiepreventie en antibiotica gebruik door transparantie. NTvG. 2016

Environmental contamination

High level of contamination of:

- Keyboard Computer on wheels (COW)
- Potty-chairs
- " orphan" objects
- Better agreements on responsibilities
- Dedicated cleaning staff
- Monitoring cleaning practices
- Monitoring cleaning performed by nursing staf
- \rightarrow Significant reduction in ATP level (p<0.0001)

HANDHYGIENE

- Education program Hand hygiene (performed by nurses)
- Hand disinfectants at the bed-side
- Peer review feedback
- Increase in compliance from 43% to 66% (over 1000 observations per IRIS, p<0.000)

Infection RIsk Scan – Nursing Homes

- Residential setting
- More interaction between residents
- Lower awareness about hygiene among residents
- Difficult instruction opportunities among residents

Infection <u>RI</u>sk <u>S</u>can – Nursing Homes (NH)

Setting:9 Nursing Homes within one organisationInclusion:774 residents (range 14-189 per NH)

No significant difference in population between the 9 NHs.

An IRIS scan was performed. Results were expressed in an IRIS-plot for each NH

Infection **<u>RI</u>sk <u>S</u>can – Nursing Homes (NH)**

Infection RIsk Scan – Nursing Homes (NH)

Infection RIsk Scan – Nursing Homes (NH)

Infection **<u>RI</u>sk <u>S</u>can – Nursing Homes (NH)**

Antimicrobial resistance in the NH

643 out of 774 residents were screened \rightarrow 70/643 (10.9%) ESBL carriage

E. coli / Breda

Outbreak strain – *E. coli* ST131

E. coli ST131 is a "highly transmissable" and virulent outbreak strain.

- Long term carriage
- "Super clone"
- Virulent
- Resistent

Livermore D M J. Antimicrob. Chemother. 2009;64:i29-i36 Journal of Antimicrobial Chemotherapy

Escherichia coli Sequence Type 131 Is a Dominant, Antimicrobial-Resistant Clonal Group Associated with Healthcare and Elderly Hosts

Ritu Banerjee, MD, PhD;¹ Brian Johnston, BS;² Christine Lohse, MS;³ Stephen B. Porter, BS;² Connie Clabots, BS;² James R. Johnson, MD²

Current situation in this NH

Cleaning in the 21th century

THE DARK AGES ?

IT DOESN'T HURT TO BE OPTIMISTIC. YOU CAN ALWAYS CRY LATER.

LUCIMAR SANTOS DE LIMA

PICTUREQUOTES, com.

i-4-1-health project (Netherland – Belgium)

HEALTH

Goal: to obtain insight in the presence and transmission of antimicrobial resistance in

- Hospitals
- Nursing homes
- Schools and kindergardens
- Veterinary farms

by using the IRIS method

The ultimate goal is to control and reduce resistance in the border area.

Europees Fonds voor Regionale Ontwikkeling

Acknowledgements

Amphia ziekenhuis

- Esther Weterings
- Carlo Verhulst
- Gonny Moen
- Jan Kluytmans
- Kees Verduin
- Miranda van Rijen
- Marjolein Kluytmans
- Sanny Nijssen
- Tineke de Goede
- Veronica Weterings
- Wouter Blox
- Yvonne Hendriks

Elisabeth Tweesteden ziekenhuis

- Jacobien Veenemans
- Joep Stohr

Amphi A

- Jolande Nelson

Thebe

- Ans Mulder
- Sandrien Verhoef

Rhode Island Hospital

- Julie Jefferson
- Leonard Mermel

Rhode Island Hospital *Lifespan. Delivering health with care*.

Universitair Ziekenhuis Leuven

- Annette Schuermans
- Martine Verelst
- Veroniek Saegemans

